TY - BOOK AU - Conway, John B. TI - A course in operator theory SN - 9780821820650 U1 - 515.72 23rd PY - 2000/// CY - Rhode Island PB - American Mathematical Society KW - Mathematics KW - Analysis KW - Functional analysis KW - Calculus KW - Operational calculus KW - Operator theory N1 - Includes bibliographic references, subject index and list of symbols N2 - Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on C*-algebras, normal operators, compact operators and non-normal operators. The topics include the spectral theorem, the functional calculus and the Fredholm index. Also, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of C*-algebras, compact perturbations and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. These advanced topics are at the heart of current research. The last chapter gives an introduction to reflexive subspaces, i.e., subspaces of operators that are determined by their invariant subspaces. These, along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis ER -