Central Library, IISER Berhampur
Amazon cover image
Image from Amazon.com

Flag varieties : An interplay of geometry, combinatorics and representation theory.

By: Contributor(s): Material type: TextTextLanguage: ENG Series: Texts and Readings in Mathematics ; Vol. 53Publication details: New Delhi: Hindustan Book Agency, c2018.Edition: 2nd edDescription: xiii, 310p. : 24cmISBN:
  • 9789386279705 (hbk.)
Subject(s): DDC classification:
  • 516.35 LAK 23rd
Summary: Flag varieties are important geometric objects and their study involves an interplay of geometry, combinatorics, and representation theory. This book is detailed account of this interplay. In the area of representation theory, the book presents a discussion of complex semisimple Lie algebras and of semisimple algebraic groups; in addition, the representation theory of symmetric groups is also discussed. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Because of the connections with root systems, many of the geometric results admit elegant combinatorial description, a typical example being the description of the singular locus of a Schubert variety. This is shown to be a consequence of standard monomial theory (abbreviated SMT). Thus the book includes SMT and some important applications - singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Notes Barcode
Books Books Vigyanpuri Campus 516.35 LAK (Browse shelf(Opens below)) Available Acquired through NBHM Library Grant 2024-2025. M00045

Includes appendix, bibliographic references, list of symbols and subject index.

Flag varieties are important geometric objects and their study involves an interplay of geometry, combinatorics, and representation theory. This book is detailed account of this interplay. In the area of representation theory, the book presents a discussion of complex semisimple Lie algebras and of semisimple algebraic groups; in addition, the representation theory of symmetric groups is also discussed. In the area of algebraic geometry, the book gives a detailed account of the Grassmannian varieties, flag varieties, and their Schubert subvarieties. Because of the connections with root systems, many of the geometric results admit elegant combinatorial description, a typical example being the description of the singular locus of a Schubert variety. This is shown to be a consequence of standard monomial theory (abbreviated SMT). Thus the book includes SMT and some important applications - singular loci of Schubert varieties, toric degenerations of Schubert varieties, and the relationship between Schubert varieties and classical invariant theory.

There are no comments on this title.

to post a comment.